Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO2
نویسندگان
چکیده
Stomatal guard cell response to various stimuli is an important process that balances plant carbon dioxide (CO2) uptake and water transpiration. Elevated CO2 induces stomatal closure, while low CO2 promotes stomatal opening. The signaling process of elevated CO2 induced stomatal closure has been extensively studied in recent years. However, the mechanism of low CO2 induced stomatal opening is not fully understood. Here we report metabolomic and proteomic responses of Brassica napus guard cells to low CO2 using hyphenated mass spectrometry technologies. A total of 411 metabolites and 1397 proteins were quantified in a time-course study of low CO2 effects. Metabolites and proteins that exhibited significant changes are overrepresented in fatty acid metabolism, starch and sucrose metabolism, glycolysis and redox regulation. Concomitantly, multiple hormones that promote stomatal opening increased in response to low CO2. Interestingly, jasmonic acid precursors were diverted to a branch pathway of traumatic acid biosynthesis. These results indicate that the low CO2 response is mediated by a complex crosstalk between different phytohormones.
منابع مشابه
Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics.
Guard cells are highly specialized cells that form tiny pores called stomata on the leaf surface. The opening and closing of stomata control leaf gas exchange and water transpiration as well as allow plants to quickly respond and adjust to new environmental conditions. Mesophyll cells are specialized for photosynthesis. Despite the phenotypic and obvious functional differences between the two t...
متن کاملMetabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate
Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassic...
متن کاملGabiPD: the GABI primary database—a plant integrative ‘omics’ database
The GABI Primary Database, GabiPD (http://www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput exp...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملResponse to multi-generational selection under elevated [CO2] in two temperature regimes suggests enhanced carbon assimilation and increased reproductive output in Brassica napus L.
Functional plant traits are likely to adapt under the sustained pressure imposed by environmental changes through natural selection. Employing Brassica napus as a model, a multi-generational study was performed to investigate the potential trajectories of selection at elevated [CO2] in two different temperature regimes. To reveal phenotypic divergence at the manipulated [CO2] and temperature co...
متن کامل